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LOCALIZATION ON 5 SITES FOR VERTEX REINFORCED RANDOM
WALKS: TOWARDS A CHARACTERIZATION

BY BRUNO SCHAPIRA

Aix-Marseille Université, CNRS, bruno.schapira@univ-amu.fr

We continue the investigation of the localization phenomenon for a ver-
tex reinforced random walk on the integer lattice. We provide some partial
results towards a full characterization of the weights for which localization
on 5 sites occurs with positive probability, and make some conjecture con-
cerning the almost sure behavior.

1. Introduction. Given a sequence w = (w(n))n≥0 of positive real numbers, called
the weight, one can define a process (Xn)n≥0 on Z, called vertex reinforced random walk
(VRRW) as follows: first X0 = 0, and then for any n ≥ 0 and x ∈ Z,

(1) P(Xn+1 = x ± 1 |Fn) = w(Zn(x ± 1))

w(Zn(x + 1)) + w(Zn(x − 1))
,

where Fn := σ(X0, . . . ,Xn) and Zn(y) is the number of visits to site y by the process before
time n (see below). This process was introduced by Pemantle [6] on the complete graph and
for a linear weight, and then by Pemantle and Volkov on Z, still for the linear weight, who
showed that the process localizes on five sites with positive probability, that is with positive
probability exactly five sites are visited infinitely often. This result was later improved by
Tarrès who showed [10, 11] that this behavior occurs in fact almost surely.

A few years later, Volkov [12] introduced the model with a general weight sequence, in
the same fashion as Davis [4] did for edge reinforced random walks. He proved in particular
that for weights of the form w(n) = nα , with α < 1, localization on a finite subgraph is not
possible. This was later improved in [3, 8, 9] in the case α < 1/2, where it was proved that
the process visits almost surely all sites infinitely often.

In a previous work in collaboration with Basdevant and Singh [1], we managed to com-
pletely characterize the nondecreasing weights for which localization on 4 sites occurs with
positive probability, or almost surely, in terms of some parameter αc(w) (see below). Our aim
here is to analyze the analogous question for the localization on 5 sites. For this we introduce
some new parameter βc(w), which should play a similar role as αc(w). To define it, we first
extend w as a function on the positive reals by w(t) := w(�t�), and then set

W(t) :=
∫ t

0

1

w(u)
du.

We will assume throughout the paper that

(2)
∞∑

n=0

1

w(n)
= ∞,

which is equivalent to saying that W is a bijection from R+ to itself. Note however, that this
is not a restrictive hypothesis, since when w is reciprocally summable, it is known [1, 12]
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that the process localizes almost surely on two sites. Then we denote by W−1 its inverse, and
define for α > 0,

Iα(w) :=
∫ ∞

0

dx

w(W−1(W(x) + α))
.

When w is nondecreasing, the map α �→ Iα(w) is nonincreasing and one defines

(3) αc(w) := inf
{
α ≥ 0 : Iα(w) < ∞} ∈ [0,∞],

with the convention that inf∅ = ∞. In [1] it was proved in particular that localization on 4
sites holds with nonzero probability if, and only if, αc(w) is finite. We now define for β ∈ R,

Jβ(w) :=
∫ ∞

0

dx

w(W−1(2W(x) + β))
,

with the convention that W−1(u) = 0, for u < 0, and set

βc(w) := inf
{
β ∈R : Jβ(w) < ∞} ∈ [−∞,+∞].

We make the following conjecture (with R′ standing for the set of sites which are visited
infinitely often).

CONJECTURE 1.1. Assume that w is nondecreasing and satisfies (2). Assume further
that αc(w) = ∞. Then

P
(∣∣R′∣∣ = 5

)
> 0 ⇐⇒ P

(∣∣R′∣∣ = 5
) = 1 ⇐⇒ βc(w) < ∞.

REMARK 1.1. As we will later explain further, we also conjecture that in fact βc(w)

always belongs to {±∞}.

The hardest part here is the characterization of the almost sure localization, which is a
notoriously difficult problem that we will not discuss in this paper; we simply recall that
in the case of a linear weight, Tarrès proved that |R′| = 5 almost surely [10, 11]. Proving
that the same holds for some other weight function is possibly one of the most challenging
problem on this model. Instead we will only be interested here on the easiest part of the
conjecture, which is a characterization of the localization with positive probability. Our first
result provides one direction of the conjecture:

THEOREM 1.1. Assume that w is nondecreasing. Then

P
(∣∣R′∣∣ = 5

)
> 0 =⇒ βc(w) < +∞.

We note that this result was proved in [2] (see the proof of Proposition 1.4 there) under
some additional hypotheses on w, including the fact that w was a slowly varying function.

Our second result concerns the other direction. However, instead of βc(w) being finite,
one needs to assume some slightly stronger condition (which we nevertheless conjecture to
be equivalent). Namely, we first define H(x) := x + W−1(W(x) + 1), and note that H is
increasing and continuous; thus it has an inverse which we denote by H−1. Then set for
β ∈ R,

J̃β(w) :=
∫ ∞

0

dx

w(H−1(W−1(2W(x) + β)))
,

and

β̃c(w) := inf
{
β ∈R : J̃β(w) < ∞} ∈ [−∞,+∞].
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Note that H(x) ≥ x and H−1(x) ≤ x, for all x ≥ 0. Thus for any β ∈ R, J̃β(w) ≥ Jβ(w). In
particular for any w,

β̃c(w) ≥ βc(w).

Our second result is the following.

THEOREM 1.2. Assume that w is nondecreasing and satisfies (2). Assume further that
αc(w) = ∞. Then

β̃c(w) < ∞ =⇒
{
P

(
5 ≤ ∣∣R′∣∣ < ∞) = 1,

P
(∣∣R′∣∣ ∈ {5,6}) > 0.

As mentioned above we conjecture that in fact βc(w) = β̃c(w), for all weights w. We
provide some evidence for this fact at the end of the paper, and show that it is true for a large
class of weight functions (see Lemmas 5.1 and 5.2).

In particular Lemma 5.1 shows that for any surlinear weight function, such that w(n) =
o(n

√
logn), one has β̃c(w) = −∞. This is, of course, not surprising, regarding the known

result for a linear weight, but we stress that prior to this, not much was known for weights
with intermediate growth between linear and n log logn. Indeed, in [1] it was only proved
that for weights satisfying w(n) = o(n log logn), αc(w) = ∞, and localization on 4 or less
sites was impossible.

It might look a bit disappointing that we cannot exclude the possibility of a localization
on 6 sites in the conclusion of Theorem 1.2, especially since for a linear weight as well as
for weights satisfying w(n) ∼ n/ exp(logα n), with α ∈ (0,1/2), it was proved respectively
in [7, 10] and [2], that localization on 5 sites occurs with positive probability. Let us however
observe that in both cases the proofs rely heavily on the explicit form of the weight function
and cannot be transposed (at least not directly) to the general setting we are considering here.

Finally we also believe that localization on any even number of sites, larger than or equal
to 6, is not possible for any weight function. In contrast it was proved in [2] that localization
on any odd number of sites—other than one and three—is possible.

The paper is organized as follows. In the next section, we recall some important and ele-
mentary facts about the VRRW, and some related martingales attached to each site. Then in
Sections 3 and 4 we give the proofs of Theorems 1.1 and 1.2 respectively. The final section
is concerned with the computation of the parameters βc(w) and β̃c(w), and gives some cases
where one can show equality between them.

2. Notation and background.

2.1. VRRW. Given some initial distribution of local times C := (z0(y))y∈Z ∈ N
Z, we de-

fine the C-VRRW as the process (Xn)n≥0, whose transition probabilities are given by (1),
with for any y ∈ Z, Z0(y) = z0(y), and for any n ≥ 1,

Zn(y) := z0(y) +
n∑

k=1

1{Xk = y}.

We denote by PC the law of the C-VRRW. We call C0 the configuration with z0(y) = 0, for
all y �= 0 and z0(0) = 1. We then simply say that X is a VRRW when its initial local time
distribution is given by C0, and denote its law by P. We also recall that a C-VRRW can be
defined as well on any subgraph of Z, and we refer to [1] for details.
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2.2. The martingales Mn(x). For x ∈ Z, define Z∞(x) := limn→∞ Zn(x). Recall that R′
stands for the set of sites visited infinitely often by the walk:

R′ := {
x ∈ Z : Z∞(x) = ∞}

.

We define for any n ≥ 1, and x ∈ Z,

(4) Y±
n (x) :=

n−1∑
k=0

1{Xk = x,Xk+1 = x ± 1}
w(Zk(x ± 1))

,

and

Mn(x) := Y+
n (x) − Y−

n (x).

We let also Y±
0 (x) = 0, and M0(x) = 0, and consider the limits:

Y±∞(x) := lim
n→∞Y±

n (x).

An important observation from Tarrès [10, 11] is that (Mn(x))n≥1 is a martingale for each
x ∈ Z. Moreover, if

(5)
∞∑

n=0

1

w(n)2 < ∞,

then these martingales are bounded in L2, and thus converge almost surely and in L2. More-
over, for any C-VRRW, one has

(6) Y+
n (x − 1) + Y−

n (x + 1) = W
(
Zn(x)

) − W
(
z0(x)

)
.

We will also use the following result due to Tarrès (see also [1], Lemma 3.3).

LEMMA 2.1 (Tarrès [10]). Assume that w is nondecreasing and that (5) holds. Then, for
any x ∈ Z, almost surely,{

Y+∞(x) < ∞} = {
Y−∞(x) < ∞} = {

Z∞(x − 1) < ∞} ∪ {
Z∞(x + 1) < ∞}

.

We further use the same notation as in [10], and write f (n) ≡ g(n), when the sequence
(f (n) − g(n))n converges to some finite real. In particular, it follows from the above discus-
sion that

(7)
∑
n≥0

1

w(n)2 < ∞ =⇒ Y+
n (x) ≡ Y−

n (x) for all x ∈ Z.

3. Proof of Theorem 1.1. We start the proof with the following lemma.

LEMMA 3.1. Assume that w is nondecreasing. Then

P
(∣∣R′∣∣ = 5

)
> 0 =⇒

∞∑
n=0

1

w(n)2 < ∞.

REMARK 3.1. This result has the same flavor as some others from [8, 9, 12], which
all give different conditions on the weight w, ensuring that localization on any finite sub-
graph is not possible. In particular the proof in [9] shows that for any weight satisfying
lim supn/w(n)2 = ∞, the walk cannot localize on any finite subgraph, which is close to
implying our result (but not quite).
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PROOF OF LEMMA 3.1. We first note that if localization on five sites occurs with positive
probability, then there exists some initial configuration C, such that with positive probability
the C-VRRW spends all its time in the set {1,2,3,4,5}, and visits all sites from this set in-
finitely often. Call E this event. By the conditional Borel-Cantelli Lemma (see Theorem 4.3.2
in [5]), one can see that almost surely on the event E, one has Y+∞(1) < ∞, since for some
constant c > 0 (only depending on C), one has

Y+∞(1) ≤ c
∑
k≥0

P[Xk+1 = 0 | Fk]1{Xk = 1},

where we denote here by Fk the sigma field generated by the process X up to its k-th visit to
site 1. Then we use that the following process is a martingale (for a very similar reason as for
Mn(x)):

Y+
n (1) −

Zn(2)−z0(2)∑
k=1

pk(2,1)

w(k + z0(2))
,

where pk(2,1) denotes the probability to jump to site 1 at kth visit to site 2. Since this
martingale has bounded increments, we know that almost surely, either it converges, or its
lim sup as well as its lim inf are both infinite (see Theorem 4.3.1 in [5]). However, we have
just observed that on the event E, its lim sup is finite, which means that it must converge, and
as a consequence on the event E, it holds almost surely

∞∑
k=1

pk(2,1)

w(k + z0(2))
< ∞.

Now by definition of pk(2,1), one has for some constant c > 0 (depending only on C), and
on E,

∞∑
k=1

1

w(k + z0(2))w(Zτk
(3))

≤ c

∞∑
k=1

pk(2,1)

w(k + z0(2))
< ∞,

where τk denotes the time of kth visit to site 2. By symmetry one has as well

∞∑
k=1

1

w(k + z0(4))w(Zτ̃k
(3))

< ∞,

with τ̃k the time of kth visit to site 4. Finally observe that for any n, Zn(3) ≤ Zn(2)+Zn(4)+
C, with C a constant depending only on C. This implies that for any k, either Zτk

(3) ≤
2k + C + z0(3) or Zτ̃k

(3) ≤ 2k + C + z0(3). Using that w is nondecreasing, it follows that
for some (possibly larger) constant C > 0,∑

k≥0

1

w(2k + C)2 < ∞.

The lemma follows, using again that w is nondecreasing. �

We next prove the following result.

LEMMA 3.2. Let X be a C-VRRW, for some initial local time configuration C. Assume
that w is nondecreasing, and satisfies (2) and (5). Then on the event E = {Z∞(0) = Z∞(4) =
∞} ∩ {Y+∞(0) < ∞} ∩ {Y−∞(4) < ∞}, it holds almost surely

Zn(2) − max
(
Zn(1),Zn(3)

) → +∞ as n → ∞.
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PROOF. Let for n ≥ 1,

Nn(y, y ± 1) :=
n−1∑
k=0

1{Xk = y,Xk+1 = y ± 1},

denotes the number of jumps from y to y ± 1 before time n, for any y ∈ Z. Then

(8) Zn(1) ≡ Nn(0,1) + Nn(2,1) and Zn(2) ≡ Nn(1,2) + Nn(3,2).

Now observe that W(Nn(2,1)) − Y−
n (2) is nondecreasing and that for all n,

0 ≤ W
(
Nn(2,1)

) − Y−
n (2) ≤ Y+

n (0) + W
(
z0(1)

)
.

Since by definition Y+∞(0) is finite on the event E, we deduce that

W
(
Nn(2,1)

) ≡ Y−
n (2).

By symmetry, one has as well

W
(
Nn(2,3)

) ≡ Y+
n (2),

and since by (7), one also has Y−
n (2) ≡ Y+

n (2), we get in fact

(9) W
(
Nn(2,1)

) ≡ W
(
Nn(2,3)

)
.

Moreover, Lemma 2.1 implies that under the hypotheses of the lemma and on the event E,
Z∞(−1) is finite, and thus Y+∞(−1) also. Together with (6), it follows that

(10) W
(
Nn(1,0)

) ≡ W
(
Zn(0)

) ≡ Y−
n (1) ≡ Y+

n (1).

We claim now that

(11) δn := W
(
Nn(1,2)

) − Y+
n (1) → +∞.

Indeed, on one hand δn is nondecreasing, and on the other hand its limit δ∞ satisfies δ∞ ≥
Y−∞(3). Since Z∞(4) = Z∞(2) = ∞, Lemma 2.1 shows that Y−∞(3) = ∞, and we get (11).
By using next that |Nn(1,2) − Nn(2,1)| ≤ 1, together with (9), (10), and (11), we obtain

W
(
Nn(2,3)

) − W
(
Nn(1,0)

) → +∞,

which implies that Nn(2,3) − Nn(1,0) → +∞. Using now (8), it follows that Zn(2) −
Zn(1) → +∞, almost surely. By symmetry we get as well Zn(2) − Zn(3) → +∞, and the
lemma follows. �

Let us resume now the proof of Theorem 1.1. Lemma 3.7 in [1] shows that there exists
some local time configuration C, such that for the C-VRRW, the event

E := {
Z∞(0) = Z∞(4) = ∞} ∩ {

Y+∞(0) < ∞} ∩ {
Y−∞(4) < ∞}

,

has some positive probability. Moreover, we know by (6) that on E,

W
(
Zn(1)

) − W
(
Zn(3)

) ≡ Y−
n (2) − Y+

n (2),

and using (7), we deduce that W(Zn(1)) − W(Zn(3)) converges as n → ∞, towards some
α ∈ R. Furthermore, Lemma 4.8 in [1] shows that almost surely α �= 0, and by symmetry we
can assume without loss of generality that α > 0. In particular, this gives Zn(1) ≥ Zn(3), for
n large enough. Set now

hn(2) :=
Zn(2)−z0(2)∑

k=1

2pk − 1

w(k + z0(2))
,
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where pk is the probability to jump to site 1 at the kth visit to site 2. As noticed already in the
proof of Lemma 3.1, one has hn(2) ≡ Y+

n (1) − Y−
n (3). But since after some time the process

has at least probability 1/2 to jump to 1 when it is in 2, we see that for n large enough hn(2) is
nondecreasing. In particular there exists some (random) constant γ ∈ R, such that hn(2) ≥ γ ,
for all n ≥ 0. This implies that for some other constant γ ′ > 0,

Y−
n (3) ≤ Y+

n (1) + γ ′ for all n ≥ 0.

By using also that

W
(
Zn(0)

) ≡ Y−
n (1) ≡ Y+

n (1) ≡ W
(
Zn(2)

) − Y−
n (3),

we deduce that for some (random) β ∈ R,

(12) W
(
Zn(2)

) ≤ 2W
(
Zn(0)

) + β for all n ≥ 0.

Together with Lemma 3.2, this yields for some constant c > 0,

Y+∞(0) ≡
∞∑

n=0

1{Xn = 0}
w(Zn(1))

≥ c

∞∑
n=0

1{Xn = 0}
w(Zn(2))

≥ c

∞∑
n=0

1

w(W−1(2W(n) + β))
,

which concludes the proof of the theorem, since Y+∞(0) is finite on E.

4. Proof of Theorem 1.2. We start the proof with some elementary lemma.

LEMMA 4.1. Assume that w is nondecreasing. Then

βc(w) < ∞ =⇒
∞∑

n=0

1

w(n)2 < ∞.

PROOF. Assume that w(n) ≤ √
n, for some n ≥ 1. Since w is nondecreasing, this implies

on one hand W(n + 1) ≥ √
n, and also w(k) ≥ w(0), for all k ≥ 0. The latter implies the

existence of a constant c > 0, such that W(k) ≤ √
n/3, for all k ≤ c

√
n (namely one can

take c = w(0)/3). Assume that n is large enough so that
√

n/3 < (
√

n − βc(w) − 1)/2. Then
2W(k) + βc(w) + 1 <

√
n, for all k ≤ c

√
n. Therefore W−1(2W(k) + βc(w) + 1) < n + 1,

for all such k, and it follows that∑
c
√

n/2≤k≤c
√

n

1

w(W−1(2W(k) + βc(w) + 1))
≥ c/2.

In particular, by definition of βc(w), this can only happen for finitely many n, which proves
that lim infw(n)/

√
n ≥ 1.

We use now this information to bootstrap the previous argument. Assume that w(n) ≤
n2/3 for some n ≥ 1, later taken large enough. Note first that this implies W(n + 1) > n1/3.
Moreover, since lim infw(m)/

√
m ≥ 1, we can find c > 0 some small enough constant, such

that W(cn2/3) ≤ n1/3/3, assuming n is large enough. Taking larger n if necessary, one can
assume that 2W(k) + βc(w) + 1 ≤ n1/3, for all k ≤ cn2/3. This implies first W−1(2W(k) +
βc(w) + 1) ≤ n, and then w(W−1(2W(k) + βc(w) + 1)) ≤ n2/3, for all such k. Thus∑

cn2/3/2≤k≤cn2/3

1

w(W−1(2W(k) + βc(w) + 1))
≥ c/2,

from which we deduce that lim infw(n)/n2/3 ≥ 1, and the lemma follows. �

The next step is the following lemma.
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LEMMA 4.2. Assume that w is nondecreasing and that β̃c(w) < ∞. For N ≥ 1 integer,
η ∈ (0,1), and β ∈ R we define CN,η,β , as the set

CN,η,β :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{
z0(x)

}
x∈Z ∈ N

Z :

z0(−1) ≤ z0(−2) + z0(0)

z0(−1) ∧ z0(0) ≥ N

W
(
z0(−2)

) ≤ W
(
z0(0)

) − η

W
(
z0(−3)

) ≤ W
(
z0(−1)

)
/2 − β

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Given C some local time configuration, we denote by P
∗
C the law of the C-VRRW restricted to

the set {−3, . . . ,0}. For any η ∈ (0,1), and β > (β̃c(w) + 3η)/2, one has

lim
N→∞ inf

C∈CN,η,β

P
∗
C
(
Y+∞(−3) < ∞) = 1.

PROOF. Let N ≥ 1, η > 0, and β > (β̃c(w) + 3ε)/2 be given. Consider C ∈ CN,ε,β , and
define the following stopping times:

T0 := inf
{
n ≥ 0 : W (

Zn(−2)
) ≥ W(N) − η

}
,

T1 := inf
{
n ≥ T0 : W (

Zn(−2)
) ≥ W

(
Zn(0)

) − η/2
}
,

T2 := inf

⎧⎪⎪⎨⎪⎪⎩n ≥ T1 :
W

(
Zn(−2)

) ≥ W
(
Zn(0)

) − η/4

or

W
(
Zn(−2)

) ≤ W
(
Zn(0)

) − 3η/4

⎫⎪⎪⎬⎪⎪⎭ ,

and

T3 := inf
{
n ≥ 0 : W (

Zn(−3)
) ≥ W(N)/2 − β

}
.

The main steps of the proof are the following. First we will see that on the event when T1 is
infinite, Y+∞(−3) is finite, and thus the main part of the proof is to deal with the event when T1
is finite. Now after time T1 we know that the local time in −2 is large, specifically ZT1(−2) ≥
N ′ := W−1(W(N) − 1), since η ≤ 1 by hypothesis. This ensures that the fluctuations of the
martingale (Mn(−1))n≥0 after time T1 are small, by Doob’s L2 inequality combined with the
fact that the square of w is reciprocally summable by hypothesis on β̃c(w) and Lemma 4.1
(recall that βc(w) ≤ β̃c(w)). More precisely, we fix now some ε > 0, and we get that for N

large enough,

(13) P
∗
C

(
sup
n≥T1

∣∣Mn(−1) − MT1(−1)
∣∣ ≥ η

10

)
≤ 200

η2

∞∑
i=N ′

1

w(i)2 ≤ ε.

The next step is to see that necessarily at time T1 the local time in −3 is also large, and
thus that the fluctuations of the martingale (Mn(−2))n≥0 after T1 are also small for N large
enough; see (17) below. This is where the role of T0 comes into play, since we show that the
increment of the local time in −3 between T0 and T1 goes to infinity as N → ∞. We note
that to prove this, we use (13). The last step of the proof is to see that with probability close
to one T2 is infinite, and furthermore that the increment of Y+

n (−3) between times T1 and T2
is dominated by a series which appears in the definition of β̃c(w), which is why we need this
quantity to be finite. This is also where the role of T3 appears. We show that the process

U(n) := W
(
Zn(−3)

) − W(Zn(−1))

2
,

remains bounded between times T1 ∧ T3 and T2, with probability close to one (and is also
bounded up to time T3 by definition).
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Let us now proceed with the details of the argument. First observe that W(Zn(−2)) −
W(Zn(0)) ≡ Y+

n (−3), and thus

(14) {T1 = ∞} ⊆ {
Y+∞(−3) < ∞}

.

Therefore, one can assume now that T1 is finite.
The next step is to show that the local time in −3 at time T1 is large, and for this we show

that its increment between T0 and T1 is large. Indeed, note first that since the process we
consider is reflected in 0, one has for any n ≥ T0,

Y+
n (−1) − Y+

T0
(−1) = W

(
Zn(0)

) − W
(
ZT0(0)

)
.

In addition, (6) gives(
Y+

n (−3) − Y+
T0

(−3)
) + (

Y−
n (−1) − Y−

T0
(−1)

) = W
(
Zn(−2)

) − W
(
ZT0(−2)

)
.

Assume that N ′ = W−1(W(n) − 1) is large enough so that w(N ′) ≥ 6/η. By definition of T0
and T1, this implies

W
(
ZT1(−2)

) − W
(
ZT0(−2)

) ≥ W
(
ZT1(0)

) − W
(
ZT0(0)

) + η

3
.

Then it follows from the last displays and (13) that for N large enough,

(15) P
∗
C

(
Y+

T1
(−3) − Y+

T0
(−3) ≤ η

6

)
≤ P

∗
C

(∣∣MT1(−1) − MT0(−1)
∣∣ ≥ η

6

)
≤ ε.

Define next

N ′′ := inf
{
n ≥ N ′ : W(n) − W

(
N ′) ≥ η

6

}
.

Since w is nondecreasing, and since we recall that by definition of T0, one has ZT0(−2) ≥ N ′,
it follows from (6) that

(16)
{
Y+

T1
(−3) − Y+

T0
(−3) ≥ η

6

}
⊆ {

ZT1(−3) − ZT0(−3) ≥ N ′′ − N ′}.
However, N ′′ − N ′ → ∞, and thus ZT1(−3) → ∞ as well, when N → ∞. It follows using
again Doob’s L2-inequality, that for N large enough,

(17) P
∗
C

(
sup
n≥T1

∣∣Mn(−2) − MT1(−2)
∣∣ ≥ η

6

)
≤ ε.

The last step of the proof is to show that with probability close to one, T2 is infinite and
Y+

T2
(−3) − Y+

T1
(−3) is finite. Let

h(n) :=
Zn(−1)∑

k=1

2pk − 1

w(k)
,

where pk is the probability to jump to 0 at the kth visit to −1. Recall that

Y−
n (0) − Y+

n (−2) ≡ h(n),

and on the other hand (6) and Lemma 2.1 yield

W
(
Zn(−1)

) ≡ Y+
n (−2) + Y−

n (0) and Y+
n (−2) ≡ Y−

n (−2) ≡ W
(
Zn(−3)

)
.

As a consequence,

U(n) = W
(
Zn(−3)

) − W(Zn(−1))

2
≡ −h(n)

2
.
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Since Zn(−2) ≤ Zn(0), for all n ≤ T2, h is nondecreasing up to time T2. Note that
U(T1 ∧T3) ≤ −β +η/2, if N is taken large enough. Also by definition, supn≤T3

U(n) ≤ −β .
Therefore by using (17), and again Doob’s L2-inequality, we get at least for N large enough,

(18) P
∗
C
(

sup
T1∧T3≤n≤T2

U(n) ≥ −β + η
)

≤ ε.

Remember then that H is defined by H(x) = x + W−1(W(x) + 1), and thus by using the
hypothesis on C, we get that for all T1 ≤ n ≤ T2,

Zn(−1) ≤ Zn(−2) + Zn(0) ≤ H
(
Zn(−2)

)
.

It follows that on the event {supT1∧T3≤n≤T2
U(n) ≤ −β + η}, one has

(19)

Y+
T2

(−3) − Y+
T1

(−3) =
T2∑

n=T1

1{Xn = −3}
w(Zn(−2))

≤
T2∑

n=T1

1{Xn = −3}
w(H−1(Zn(−1)))

≤
∞∑

n=ZT1 (−3)

1

w(H−1(W−1(2W(n) + 2β − 2η)))
.

Using now that β ≥ (β̃c(w) + 3η)/2, we can find K ≥ 1 such that
∞∑

n=K

1

w(H−1(W−1(2W(n) + β̃c(w) + η)))
≤ η

10
.

Then by using (15), (16), (18) and (19), we get that if N is large enough,

(20) P
∗
C

(
Y+

T2
(−3) − Y+

T1
(−3) >

η

10

)
≤ 2ε.

But by definition of T1 and T2, on the event {T2 < ∞}, we have for N large enough,

η/5 <
{
W(ZT2(−2) − W

(
ZT1(−2)

)} − {
W(ZT2(0) − W

(
ZT1(0)

)}
= {

Y+
T2

(−3) − Y+
T1

(−3)
} − {

MT2(−1) − MT1(−1)
}
.

Therefore (13) and (20) imply

P
∗
C(T2 < ∞) ≤ 3ε and P

∗
C
(
Y+∞(−3) − Y+

T1
(−3) ≥ 1

) ≤ 5ε.

Since ε > 0 can be chosen arbitrarily small, and since we recall that on the event {T1 = ∞},
one has Y+∞(−3) < ∞, this concludes the proof of the lemma. �

We can now finish the proof of Theorem 1.2. Fix some η ∈ (0,1) and β > (β̃c(w)+3η)/2,
and consider some initial local time configuration C, such that z0(−1) ≥ N , z0(0) ≥ N , and
z0(x) = 0, for x /∈ {−1,0}, with N ≥ 1. Note that by definition C ∈ CN,η,β , and thus by
Lemma 4.2 one has P

∗
C(Y

+∞(−3) < ∞) ≥ 3/4, for N large enough. Using the continuous
time-line construction of the VRRW (also called Rubin’s construction, see [1, 10]), we can
couple the process reflected in −3 and 0, say X, with the process reflected in −3 and 2, say
X̃, and Lemma 3.6 in [1] (see also [10] for a similar result) tells us that Ỹ+∞(−3) ≤ Y+∞(−3).
Applying this argument twice, we see that for N large enough, with probability at least 1/2,
one has both Ỹ+∞(−3) and Ỹ−∞(2) finite. Then using Lemma 3.7 in [1], we deduce that for N

large enough (say larger than some N0) the unreflected C-VRRW on Z never visits sites −4
and 3, with some positive probability.

Then we can see that the same holds for the C0-VRRW, since for any N ≥ 1, with positive
probability at time 2N , we have ZN(−1) = N − 1, ZN(0) = N , and X2N = 0, and one can
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then apply the previous result at time 2N . This proves in particular that |R′| ∈ {5,6}, with
positive probability.

Now it just remains to show that almost surely the walk visits only a finite number of sites.
However, each time the VRRW on Z visits a new site x < 0, two cases may appear. If at
this time the local time in x + 1 is not larger than N0, then the process has some positive
probability (depending only on N0) to jump immediately to x − 1, and then to localize on
the set {x − 7, . . . , x − 1} and never come back to x, by the above argument. If instead at
this hitting time of x, the local time in x + 1 is larger than N0, then necessarily the local
time in x + 2 has to be also not smaller than N0, and we deduce by using again the above
argument, that the process has some (constant) positive probability to never visit x − 2. Then
the conditional Borel–Cantelli lemma (see Theorem 4.3.2 in [5]) shows that almost surely
infn Xn > −∞. By symmetry we also get that almost surely supn Xn < ∞, and this concludes
the proof of Theorem 1.2.

5. On the values of the parameters βc(w) and ˜βc(w). Let us first observe that for any
nondecreasing w, and any λ > 0, one has βc(λw) = βc(w)/λ, and β̃c(λw) = β̃c(w)/λ (which
follows from the facts that Jβ(λw) = Jλβ(w)/λ, and J̃β(λw) = J̃λβ(w)/λ).

Now our aim here is to convince the reader that in most cases (and we believe this is true
in fact for any nondecreasing weight function), one has:

(21) βc(w) = β̃c(w) ∈ {−∞,∞}.
On one hand we prove in Lemma 5.1 that this is true for any weight function growing at least
linearly and not faster than n

√
logn. On the other hand, we show in Lemma 5.2 that it holds

as well for a large class of sublinear weights.
Now recall that one can restrict our attention to weights satisfying (2) and such that

αc(w) = ∞, since otherwise we already know the behavior of the process by the results
of [1]. But it is also proved there that if lim infw(n)/(n log logn) > 0, then αc(w) is finite;
thus the upper bound on w, which is imposed in the hypotheses of Lemma 5.1 below is not a
strong restriction.

LEMMA 5.1. Let w be some nondecreasing weight function, such that

lim inf
n→∞

w(n)

n
> 0.

• If w(n) = o(n logn), then βc(w) = −∞.
• If w(n) = o(n

√
logn), then βc(w) = β̃c(w) = −∞.

PROOF. Assume first that w(n) = o(n logn). Let ε > 0, be such that w(n) ≤ ε2n logn,
and w(n) ≥ εn, for all n large enough. Then at least for t large enough,

(22) W(t) ≥ 1

2ε2 log log t.

Now by definition, for any β ∈ R, and t large enough,

W(t) + β =
∫ W−1(2W(t)+β)

t

du

w(u)
.

Thus using that w(n) ≥ εn, we get that for t large enough,

W(t) + β ≤ 2

ε
log

(
W−1(2W(t) + β)

t

)
.
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Combining this with (22), we get,

W−1(
2W(t) + β

) ≥ t (log t)
1
4ε ,

for all t large enough. Then by choosing ε < 1/8, and using again that lim infw(n)/n > 0,
the first assertion of the lemma follows.

Assume now that w(n) = o(n
√

logn), so that for n large enough w(n) ≤ ε2n
√

logn. Then
for x large enough,

1 =
∫ W−1(W(x)+1)

x

du

w(u)
≥ 1

ε2

∫ W−1(W(x)+1)

x

du

u
√

logu

≥ 2

ε2

(√
logW−1

(
W(x) + 1

) −
√

logx
)
.

Thus for x large enough (and ε small enough),

H(x) = x + W−1(
W(x) + 1

) ≤ 2x · eε2√logx.

On the other hand, a similar argument as above shows that for any β ∈ R, for x large enough,

W−1(
2W(x) + β

) ≥ x exp(
√

logx).

In particular, by taking ε small enough, we get that for x large enough,

H−1(
W−1(

2W(x) + β
)) ≥ x(logx)2,

and the second assertion of the lemma follows, using again that lim infw(n)/n is positive.
�

Our second result is concerned with sublinear weights.

LEMMA 5.2. Let w be some nondecreasing weight function satisfying (2). If the two
following conditions hold:

(23) lim supW−1(
W(n) + α

)
/n < ∞ for any α > 0,

and

(24) lim supw(cn)/w(n) < ∞ for any c > 1,

then βc(w) = β̃c(w) ∈ {−∞,∞}. Moreover, if w(n) = O(n), then (23) holds.

PROOF. By using a change of variables, we can write for any β > β ′, for some constant
c > 0,

Jβ(w) =
∫ ∞

0

dt

w(W−1(2W(t) + β))
=

∫ ∞
0

w(W−1(u))

w(W−1(2u + β))
du

≥ c

∫ ∞
0

w(W−1(u))

w(W−1(2u + β ′))
du = cJβ ′(w),

using the two hypotheses of the lemma. This implies that βc(w) ∈ {±∞}. Moreover, by
(23), one has t ≤ H(t) ≤ Ct , for some constant C > 0, and all t . It follows using (24) that
J̃β(w) ≤ CJβ(w), for some possibly larger C, and all β , and we deduce that β̃c(w) ∈ {±∞}
as well.
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Now if there exists C > 0, such that w(n) ≤ Cn, for all n ≥ 1, then for any α > 0,

α =
∫ W−1(W(n)+α)

n

dt

w(t)
≥ 1

C

∫ W−1(W(n)+α)

n

dt

t
= 1

C
log

(
W−1(W(n) + α)

n

)
,

which proves the second assertion of the lemma. �

Let us conclude this section by mentioning that by combining the results of [2] with our
Theorem 1.1, and the previous lemma, we obtain that any nondecreasing weight function w,
such that w(n) ∼ n exp(−(logn)α), for some α ∈ (0,1/2) satisfies β̃c(w) = −∞. Indeed,
we know from [2], that for such weight localization on 5 sites occurs with positive proba-
bility. Then Theorem 1.1 shows that βc(w) is finite, and finally Lemma 5.2 gives that in fact
βc(w) = β̃c(w) = −∞. On the other hand, when w(n) ∼ n exp(−(logn)α), with α > 1/2, the
results of [2] show that J0(w) = ∞, which imply βc(w) ≥ 0. Observing that w(n) = O(n),
and applying Lemma 5.2 gives βc(w) = β̃c(w) = ∞.

Acknowledgments. I warmly thank an Associate Editor for his or her many comments,
which helped correct some mistake and improve greatly the readability of the manuscript.
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